- 1. Let A be the set $A = \{\{1\}, 2, 3, \{4\}\}$. Determine True or False for the following statements:
 - (a) $2 \in A$.
 - (b) $\{1\} \subset A$.
 - (c) $\{1\} \in A$.
 - (d) $\{2\} \in A$.
 - (e) $\{\{1\}\} \subset A$.
 - (f) $\emptyset \subset A$.

2. Consider the sets $A = \{1, 2\}$ and $B = \{x, y, z\}$.

- (a) List the elements in $\mathcal{P}(B)$.
- (b) Build $A \times B$.
- (c) Give an example of a function from A to B.
- (d) Give an example of a one-to-one function from A to B.
- (e) Give an example of a relation from A to B that is not a function.
- 3. Suppose that the universe $\mathbb{U} = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}, A = \{1, 5, 11, 17, 19\}$ and $B = \{11, 13, 19\}.$
 - (a) Determine $A \cup B$ and $|A \cup B|$.
 - (b) Determine $A \cap B$ and $|A \cap B|$.
 - (c) Determine \overline{A} and $|\overline{A}|$.
 - (d) Determine A B.
 - (e) Represent A with a bit string of length 10 using in \mathbb{U} the increasing order.
- 4. Find $f \circ g$ and $g \circ f$ for f(x) = 5x 3 and g(x) = 7 2x.
- 5. Find the inverse of the function $f(x) = x^5 + 10$ as a function $f \colon \mathbb{R} \to \mathbb{R}$.
- 6. Find the inverse of the function $g(x) = \frac{2x+1}{x-3}$ as a function $f \colon \mathbb{R} \to \mathbb{R}$.
- 7. Explain how the function $h(x) = x^2 2$ does not have an inverse as a function $h: \mathbb{R} \to \mathbb{R}$. Can you restrict to smaller domain where an inverse exist? If possible find the an inverse in the restricted domain.
- 8. Consider the empty set Ø. What are the elements of the sets:
 (a) \$\mathcal{P}(\empty)\$.

- (b) $\mathcal{P}(\mathcal{P}(\emptyset))$.
- 9. Let \mathcal{B} be the set of all finite bitstrings. Consider the function $f: \mathcal{B} \longrightarrow \mathbb{N}$ defined by: f(S) =Position of the last 0 in the string S or 0 if S is empty or have no 0's .
 - (a) Is the function f one-to-one? Explain your answer.
 - (b) is the function f onto? Explain your answer.
- 10. Prove that for any sets A, B we have

$$A - B = A \cap \overline{B}.$$

11. Prove that for any sets A, B we have

$$(A - B) \cup ((A \cap B) = A.$$

12. Prove that for any sets A, B and C we have

$$(A - B) - C = A - (B \cup C).$$