1. Let A be the set $A=\{\{1\}, 2,3,\{4\}\}$. Determine True or False for the following statements:
(a) $2 \in A$.
(b) $\{1\} \subset A$.
(c) $\{1\} \in A$.
(d) $\{2\} \in A$.
(e) $\{\{1\}\} \subset A$.
(f) $\emptyset \subset A$.
2. Consider the sets $A=\{1,2\}$ and $B=\{x, y, z\}$.
(a) List the elements in $\mathcal{P}(B)$.
(b) Build $A \times B$.
(c) Give an example of a function from A to B.
(d) Give an example of a one-to-one function from A to B.
(e) Give an example of a relation from A to B that is not a function.
3. Suppose that the universe $\mathbb{U}=\{1,3,5,7,9,11,13,15,17,19\}, A=\{1,5,11,17,19\}$ and $B=\{11,13,19\}$.
(a) Determine $A \cup B$ and $|A \cup B|$.
(b) Determine $A \cap B$ and $|A \cap B|$.
(c) Determine \bar{A} and $|\bar{A}|$.
(d) Determine $A-B$.
(e) Represent A with a bit string of length 10 using in \mathbb{U} the increasing order.
4. Find $f \circ g$ and $g \circ f$ for $f(x)=5 x-3$ and $g(x)=7-2 x$.
5. Find the inverse of the function $f(x)=x^{5}+10$ as a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
6. Find the inverse of the function $g(x)=\frac{2 x+1}{x-3}$ as a function $f: \mathbb{R} \rightarrow \mathbb{R}$.
7. Explain how the function $h(x)=x^{2}-2$ does not have an inverse as a function $h: \mathbb{R} \rightarrow \mathbb{R}$. Can you restrict to smaller domain where an inverse exist? If possible find the an inverse in the restricted domain.
8. Consider the empty set \emptyset. What are the elements of the sets:
(a) $\mathcal{P}(\emptyset)$.
(b) $\mathcal{P}(\mathcal{P}(\emptyset))$.
9. Let \mathcal{B} be the set of all finite bitstrings. Consider the function $f: \mathcal{B} \longrightarrow \mathbb{N}$ defined by: $f(S)=$ Position of the last 0 in the string S or 0 if S is empty or have no 0 's.
(a) Is the function f one-to-one? Explain your answer.
(b) is the function f onto? Explain your answer.
10. Prove that for any sets A, B we have

$$
A-B=A \cap \bar{B}
$$

11. Prove that for any sets A, B we have

$$
(A-B) \cup((A \cap B)=A
$$

12. Prove that for any sets A, B and C we have

$$
(A-B)-C=A-(B \cup C)
$$

